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Background & motivation
CFD as a common tool in engineering

Today industrial practice

FV schemes (theoretical) 2nd order accuracy

Not accurate enough for realistic applications

Very fine meshes required: CPU expensive calculations

Simulations of large problems still expensive for fast design & optimization
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Background & motivation
CFD as a common tool in engineering

Today industrial practice

FV schemes (theoretical) 2nd order accuracy

Not accurate enough for realistic applications

Very fine meshes required: CPU expensive calculations

Simulations of large problems still expensive for fast design & optimization

Appeal of high-order methods

Faster reduction of the discretization error with the DoFs

Accurate solutions at acceptable costs

High-fidelity simulations make possible to check deficits of physical modeling
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Background & motivation
HO methods for real-life applications

Several high-order schemes developed

ENO/WENO
Continuous finite elements
Discontinuous Galerkin
Spectral volume, Spectral difference, Flux reconstruction, . . .

Active research field

Reduce the computational costs

Reliable discretization of discontinuous solutions

RD: A possible solution to these limitations
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Presentation outline

1 RD Advection-Diffusion Problems

2 Discretization of NS equations

3 Discretization of RANS equations

4 Conclusions and Perspectives
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Residual distribution schemes
The main idea for steady problems

Solve ∇· f(u) = 0, on Ω ⊂ R
d

∂Ω

Ω
→ →

Ωh

∂Ωh
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Residual distribution schemes
The main idea for steady problems

Solve ∇· f(u) = 0, on Ω ⊂ R
d

Solution approximated on each element with piece-wise continuous
polynomials of k-th order: u ≃ uh(x)

uh =
∑

i∈Nh

ψi(x)ui,
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Residual distribution schemes
The main idea for steady problems

Solve ∇· f(u) = 0, on Ω ⊂ R
d

Solution approximated on each element with piece-wise continuous
polynomials of k-th order: u ≃ uh(x)

The approximated solution will give birth to a residual: Φe(uh)

Φe(uh) =

∫

Ωe

∇· f(uh) dΩ =

∫

∂Ωe

f(uh) · n̂ dΩ

Dante De Santis (Stanford University) AMS Seminar March 26, 2015 5 / 49



Introduction RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Residual distribution schemes
The main idea for steady problems

Solve ∇· f(u) = 0, on Ω ⊂ R
d

Solution approximated on each element with piece-wise continuous
polynomials of k-th order: u ≃ uh(x)

The approximated solution will give birth to a residual: Φe(uh)

Distribution to the DoFs of the element residual

Φe
i = βe

iΦ
e

∑

i∈N e
h

Φe
i = Φe, for conservation Φe
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Solve ∇· f(u) = 0, on Ω ⊂ R
d

Solution approximated on each element with piece-wise continuous
polynomials of k-th order: u ≃ uh(x)

The approximated solution will give birth to a residual: Φe(uh)

Distribution to the DoFs of the element residual

Φe
i = βe

iΦ
e

∑

i∈N e
h

Φe
i = Φe, for conservation Φe

Gather the residuals:
∑

i∈N i
h

Φe
i = 0, ∀i

Change of the solution driven by
non-zero element residual

un+1
i − uni
∆tn

+
∑

i∈N i
h

Φe
i = 0, n→ ∞ i
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Residual Distributions schemes
Some approach for advection-diffusion problems

Well established methodology for advection problems

What about the discretization of advection-diffusion problems?

∇· f(u) = ∇·
(
ν∇u

)
, Pe = ‖a‖ h/ν
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Residual Distributions schemes
Some approach for advection-diffusion problems

Well established methodology for advection problems

What about the discretization of advection-diffusion problems?

∇· f(u) = ∇·
(
ν∇u

)
, Pe = ‖a‖ h/ν

Old approach: mixed RD (for advection) and Galerkin (for diffusion)

Error analysis reveals that the approach is 1st order accurate when Pe ∼ 1

Proper scaling of the RD upwind stabilization with Pe (Ricchiuto et al.)

New principle [Roe, Nishikawa, Caraeni, . . . ] one distribution process for the
residual of whole equation (advection+diffusion) to get an uniform order of
accuracy on entire spectrum of Pe
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Discretization of Advection-Diffusion problems
Calculation of the total residual

Total residual of the advection-diffusion problem

Φe =

∫

Ωe

(
∇· f

(
uh
)
−∇·

(
ν∇uh

))
dΩ.
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Discretization of Advection-Diffusion problems
Calculation of the total residual

Total residual of the advection-diffusion problem

Φe =

∫

Ωe

(
∇· f

(
uh
)
−∇·

(
ν∇uh

))
dΩ.

Using the divergence theorem

Φe =

∮

∂Ωe

(
f
(
uh
)
− ν∇̃uh

)
· n̂ d∂Ω,

For a piece-wise polynomial interpolation, ∇uh · n is discontinuous at the

elements face. The scheme requires a continuous gradient ∇̃uh
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RD: Distributions process
Central linear schemes (inspired by Lax-Wendroff)

Originally proposed for multidimensional upwinding

Roe, Deconinck, Abgrall ...
Formulation on simplexes & difficult extension to HO

Central schemes: HO & general elements
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RD: Distributions process
Central linear schemes (inspired by Lax-Wendroff)

Originally proposed for multidimensional upwinding

Roe, Deconinck, Abgrall ...
Formulation on simplexes & difficult extension to HO

Central schemes: HO & general elements

Linear-scheme

Φe,LW
i =

Φe

Ne
dof

+

∫

Ωe

a·∇ψi τ
(
a·∇uh −∇·

(
ν∇̃uh

))
dΩ

τ =
1

2

|Ωe|∑

j∈N e
h

max(kj , 0) + ν
, with kj =

1

2
ā·nj ,

Reconstructed gradient used in the stabilization term

High-order preserving: uh ∈ P
k ⇒ scheme O(hk+1) (always?)

Linear scheme: not monotone on shocks
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RD: Distributions process
Construction of a non-linear RD scheme

First order monotone scheme, e.g. Rusanov’s scheme

Φe
i =

Φe

Ne
dof

+ α
∑

j∈N e
h

(ui − uj), α > 0
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First order monotone scheme, e.g. Rusanov’s scheme

Φe
i =

Φe

Ne
dof

+ α
∑

j∈N e
h

(ui − uj), α > 0

βe
i =

Φe
i

Φe
unbounded. Apply the limiting map βe

i 7→ β̂e
i (uh)

β̂e
i (u

h) =
max(βe

i , 0)∑

j∈N e
h

max(βe
j , 0)

⇒ β̂e
i ∈ [0, 1] &

∑

i∈N e
h

β̂e
i = 1
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i (u

h) =
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i , 0)∑
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max(βe
j , 0)

⇒ β̂e
i ∈ [0, 1] &

∑
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Compute the high order distributed residual: Φ̂e
i = β̂e

i (u
h)Φe
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i
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unbounded. Apply the limiting map βe

i 7→ β̂e
i (uh)

β̂e
i (u

h) =
max(βe

i , 0)∑

j∈N e
h

max(βe
j , 0)

⇒ β̂e
i ∈ [0, 1] &

∑

i∈N e
h

β̂e
i = 1

Compute the high order distributed residual: Φ̂e
i = β̂e

i (u
h)Φe

Limiting enforces monotonicity but no upwinding included

The solution consists in adding a filtering term

Φ̂e
i = β̂e

i (uh)Φ
e+ǫh

∫

Ωe

(
a·∇ψi−∇·

(
ν∇ψi

))
τ
(
a · ∇uh −∇·

(
ν∇̃uh

))
dΩ
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Something is still missing
Improvement of viscous term discretization. Inspired by H. Nishikawa

Improve the discretization of diffusion dominated problems
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Improvement of viscous term discretization. Inspired by H. Nishikawa

Improve the discretization of diffusion dominated problems

Re-write the scalar equation as a first order system
{

∇· f (u)−∇· (νq) = 0

q −∇u = 0
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Improve the discretization of diffusion dominated problems

Re-write the scalar equation as a first order system
{

∇· f (u)−∇· (νq) = 0

q −∇u = 0

Discretize the FOS with a central scheme + a streamline stabilization
∫

Ωe

ψi

(
∇· f (uh)−∇· (νqh)

qh −∇uh

)
+

∫

Ωe

A·∇ψi τ

(
∇· f(uh)−∇· (νqh)

qh −∇uh

)
=0

Dante De Santis (Stanford University) AMS Seminar March 26, 2015 10 / 49



Introduction RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Something is still missing
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Improve the discretization of diffusion dominated problems

Re-write the scalar equation as a first order system
{

∇· f (u)−∇· (νq) = 0

q −∇u = 0

Discretize the FOS with a central scheme + a streamline stabilization
∫

Ωe

ψi

(
∇· f (uh)−∇· (νqh)

qh −∇uh

)
+

∫

Ωe

A·∇ψi τ

(
∇· f(uh)−∇· (νqh)

qh −∇uh

)
=0

Replace qh with ∇̃uh, the second line is discarded and the problem reads
∫

Ωe

ψi

(
∇· f (uh)−∇· (ν∇̃uh)

)
+

∫

Ωe

a·∇ψi τa

(
a·∇uh −∇·

(
ν∇̃uh

))

+

∫

Ωe

ν∇ψi ·

(
τd

(
∇uh − ∇̃uh

))
= 0
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Final form of the RD space discretization

Linear scheme

Φe,LW
i =

Φe

Ne
dof

+

∫

Ωe

a·∇ψi τ
(
a · ∇uh −∇·

(
ν∇uh

))
dΩ

+

∫

Ωe

ν∇ψi ·

(
∇uh − ∇̃uh

)
dΩ,

Non-linear scheme

Φ̂e,Rv
i = β̂e,Rv

i (uh)Φ
e(uh)

+ ǫ eh(uh)

∫

Ωe

(
a·∇ψi −∇·

(
ν∇ψi

))
τ
(
a · ∇uh −∇·

(
ν∇uh

))
dΩ

+

∫

Ωe

ν∇ψi ·

(
∇uh − ∇̃uh

)
dΩ,
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The problem of the gradient reconstruction

The “internal” gradient of the solution is replaced by a continuous
approximation

∇uh −→ ∇̃uh =
∑

i∈N e
h

ψi∇̃ui

∇̃ui is the reconstructed gradient of the solution at the DoF i
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The problem of the gradient reconstruction

The “internal” gradient of the solution is replaced by a continuous
approximation

∇uh −→ ∇̃uh =
∑

i∈N e
h

ψi∇̃ui

∇̃ui is the reconstructed gradient of the solution at the DoF i

High-order preserving scheme

With uh ∈ P
k
⇒ (k+1)-th accurate scheme for advection problems

How accurate the gradient reconstruction must be for advection-diffusion
problems? As accurate as the solution
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The problem of the gradient reconstruction

The “internal” gradient of the solution is replaced by a continuous
approximation

∇uh −→ ∇̃uh =
∑

i∈N e
h

ψi∇̃ui

∇̃ui is the reconstructed gradient of the solution at the DoF i

High-order preserving scheme

With uh ∈ P
k
⇒ (k+1)-th accurate scheme for advection problems

How accurate the gradient reconstruction must be for advection-diffusion
problems? As accurate as the solution

Classical gradient reconstruction methods

Green-Gauss (area-weighted)
L2 projection
Least-square

With these approaches ∇̃uh = O(hk). One order less than the solution
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Super-convergent Patch Recovery (Zienkiewicz & Zhu, 92)
The main idea

Idea coming from mechanical structure: compute stresses with the same
accuracy of the displacements. Main idea: use it for CFD

Gradients at certain points is more accurate than in others

For structured grids theory identifies Gauss-Legendre points. No formal
theory for unstructured grids

Polynomial interpolation of degree k with a least square fitting to the
sampled HO values within a patch of elements.
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Super-convergent Patch Recovery method
How it works

For each vertex i of the grid, the components of the of the reconstructed
gradient are written in polynomial form

∂̃uh

∂x

∣∣∣∣
i

= pTax, where
pT = (1, x, y, x2, . . . , yk)

ax = (ax1
, ax2

, . . . , axm)
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Super-convergent Patch Recovery method
How it works

For each vertex i of the grid, the components of the of the reconstructed
gradient are written in polynomial form

∂̃uh

∂x

∣∣∣∣
i

= pTax, where
pT = (1, x, y, x2, . . . , yk)

ax = (ax1
, ax2

, . . . , axm)

Minimize respect to ax the function Fx=

Ns∑

j=1

(
∂uh

∂x
(xj)− p(xj)

Tax

)2
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Super-convergent Patch Recovery method
How it works

For each vertex i of the grid, the components of the of the reconstructed
gradient are written in polynomial form

∂̃uh

∂x

∣∣∣∣
i

= pTax, where
pT = (1, x, y, x2, . . . , yk)

ax = (ax1
, ax2

, . . . , axm)

Minimize respect to ax the function Fx=

Ns∑

j=1

(
∂uh

∂x
(xj)− p(xj)

Tax

)2

Solve (in a least square sense) the linear system Aax = b
h
x , for ax

A =




1 x1 y1 . . . yk1
1 x2 y2 . . . yk2
...

...
...

. . .
...

1 xNs yNs . . . ykNs


 , bhx =




∂uh/∂x(x1)

∂uh/∂x(x2)
...

∂uh/∂x(xNS)



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ZZ Super-convergent Patch Recovery method
Important Remarks

The method is very flexible: 2D/3D, hybrid grids

A ∈ R
NS×m, Ns ≥ m (Ns sampling points, m polynomial coefficients)

On the boundary use the interior patch of the nearest vertices

How to handle high order elements?

Gradient is reconstructed by evaluating on the patch, at the coordinates of
the nodes, the polynomial function constructed for the nearest grid vertex
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ZZ Super-convergent Patch Recovery method
Accuracy test

Gradient recovery of a smooth solution on unstructured grids
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ZZ Super-convergent Patch Recovery method
Accuracy test: triangular grids
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Area-weighted L2-Projection Least-square ZZ-SPR

ZZ-SPR gives gradients with the same order of accuracy of the solution
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ZZ Super-convergent Patch Recovery method
Accuracy test: hybrid grids
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Solve: a · ∇u = ν∇·∇u, with ν = 0.01 (Pe ∼ 1)
Linear scheme: effect of the gradient reconstruction

Triangular grids and P
1 elements
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2nd order for solution and gradient with all gradient reconstruction

Dante De Santis (Stanford University) AMS Seminar March 26, 2015 19 / 49



Introduction RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Solve: a · ∇u = ν∇·∇u, with ν = 0.01 (Pe ∼ 1)
Linear scheme: effect of the gradient reconstruction

Triangular grids and P
2 elements
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error ∇̃uh

3rd order for solution and gradient only with ZPR-ZZ gradient reconstruction
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Solve: a · ∇u = ν∇·∇u, with ν = 0.01 (Pe ∼ 1)
Linear scheme: Benefit of high-order approximation

log(Ndof)
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For uh error ≃ 10−5

P
2 : Ndof ≃ 12 000, and CPU time ≃ 25min

P
1 : Ndof ≃ 31 000, and CPU time ≃ 5h
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Discontinuous solution: linear and non-linear schemes
a · ∇u = ν∇·∇u, a = (1/2,

√
3/2)T, ν = 10−3
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Governing equations
Compressible Navier-Stokes Equations

∇· f
a(u)−∇· f

v(u,∇u) = 0

u =




ρ

m

Et


 , f

a =




m

m⊗m

ρ
+ P I

(
Et + P

)m
ρ



, f

v =




0

S

S ·
m

ρ
+ κ∇T




Viscous flux function homogeneous with the respect to the gradient of the
conservative variables: fv(u,∇u) = K(u)∇u

Straightforward extension of the numerical schemes to system of equations

Additional features respect to scalar equations

Boundary conditions
Implicit scheme
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Boundary conditions
Boundary representation

Imposition of the boundary conditions

∑

e∈Eh,i

Φe
i +

∑

f∈Fh,i

Φe,∂
i = 0, ∀i ∈ Nh,

High-order schemes requires high-order boundary representation

Here isoparametric formulation used. Same order for solution and geometry

Piecewise polynomial approximation of the geometry

Dante De Santis (Stanford University) AMS Seminar March 26, 2015 23 / 49



Introduction RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Boundary conditions
Boundary representation

Imposition of the boundary conditions

∑

e∈Eh,i

Φe
i +

∑

f∈Fh,i

Φe,∂
i = 0, ∀i ∈ Nh,

High-order schemes requires high-order boundary representation

Here isoparametric formulation used. Same order for solution and geometry

Piecewise polynomial approximation of the geometry
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Navier-Stokes manufactured solutions
Definition of the exact solution
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Navier-Stokes manufactured solutions
Liner and Non-linear schemes: solution and gradient order of accuracy
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Laminar flow around a delta wing
M = 0.5, α = 12.5◦, Re = 4 000

�
�
�
�
�
�

�
�
�
�
�
�

A

A

t

c

A − A

Λ

y

x

σ

z

x

Separated steady flow at high angle of attack

Linear scheme with SPR-ZZ gradient reconstruction

Three levels of nested grids. Parallel simulations: 8, 16, 32 processors

Boundary conditions: no-slip adiabatic wall, symmetry plane and far-field

Residual drop ∼ 10−10, respect to the initial value

Dante De Santis (Stanford University) AMS Seminar March 26, 2015 26 / 49



Introduction RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Laminar flow around a delta wing
Example of solution and residual on the finest grid

(a) Mach number and streamlines

Iterations

L2
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id

ua
l

0 500 1000
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10-8
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100 ρ
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ρet

(b) Residual P1 and P2
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Laminar flow around a delta wing
Force coefficients convergence

N. Dof-1/3

C
D

er
ro

r

10-3 10-2 10-1

10-3

10-2

P1

P2

(a) Error CD

N. Dof-1/3
C

L
er

ro
r

10-3 10-2 10-1

10-2

10-1

P1

P2

(b) Error CL

Reference values: extrapolated from Higher-order DG resulted

Effect on the CD of the singularity at the leading edge

Benefit of high-order approximation on CL
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Shock-Wave/Laminar Boundary Layer Interaction
Problem specifications

M∞ = 2.15, θs = 30.8◦, ReLS = 105

Non-linear scheme with SPR-ZZ gradient reconstruction

Grid: Nx = 90 (uniform), Ny = 85 (clustered to the wall)

Second and third order simulations

Residual drop at least ∼ 10−8 with respect to the initial value

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

Boundary layer

Adiabatic wall

Outflow

Inflows

Inflow
∞

θs

y

x

Incident shock

Symmetry
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Shock-Wave/Laminar Boundary Layer Interaction
Problem specifications

M∞ = 2.15, θs = 30.8◦, ReLS = 105

Non-linear scheme with SPR-ZZ gradient reconstruction

Grid: Nx = 90 (uniform), Ny = 85 (clustered to the wall)

Second and third order simulations

Residual drop at least ∼ 10−8 with respect to the initial value

Example of third order solution
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(a) Pressure contours
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(b) Recirculation bubble
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Shock-Wave/Laminar Boundary Layer Interaction
Comparison between second and third order accurate results

Profiles at y = 0.29
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Dante De Santis (Stanford University) AMS Seminar March 26, 2015 30 / 49



Introduction RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Governing equations
RANS equations with Spalart-Allmaras model

∇· f
a(u)−∇· f

v(u,∇u) = S(u,∇u)

u =




ρ

m

Et

µ⋆
t



, f

a =




m

m⊗m

ρ
+ P I

(
Et + P

)m
ρ

m

ρ
µ⋆
t



, f

v =




0

S

S ·
m

ρ
+ κ∇T

µ+ µ⋆
t

σ
∇

(
µ⋆
t

ρ

)




S = (0,0, 0, Ssa)
T, Ssa = Psa +Esa−Dsa Spalart-Allmaras source term

Fully coupled approach: augmented advective and diffusive flux function

Discretization with linear and non-linear schemes, similar to Navier-Stokes

Additional work

Modifications to the original SA equation
Implicit solver
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Spalart-Allmaras model
Improvement of the robustness

Negative values of the turbulent working variable in the outer part of the
boundary layer and wakes (insufficient mesh resolution)

Clipping the eddy viscosity produce a physical valid model

µt =

{
µ⋆
t fv1, µ⋆

t > 0

0, µ⋆
t ≤ 0

but robustness issues in the numerical solver are still present

Several modification to the original SA model proposed

Not completely satisfying for HO methods
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Spalart-Allmaras model
Improvement of the robustness (Peraire et al., 2011)

A robust implementation of the SA equation requires to remove the adverse
effects of negative values of µ⋆

t on the turbulence model

µ⋆
t = µ

µ⋆
t

µ
= µχ

µ⋆
t = µχ −→ µ⋆

t = µψµ⋆t

-10 -5 0 5 10 15 20
-10

-5

0

5

10

15

20

χ
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-0.2
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ψµ⋆t

χ

µ⋆t /µ

The source term and flux functions of the
SA equation tend to zero for µ⋆

t < 0

Differentiability of the equation
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Implicit scheme for turbulent flows
Non-linear LU-SGS: Y.Sun, Z.J. Wang Y. Liu. 2009

Jacobian-free approach non robust for HO RANS

Solve with the symmetric variation of the Gauss-Seidel method with multiple
sweeps (k = 1, . . . , kmax)

[
I

∆tn
+
∂Ri

∂ui

]
∆u

(k+1)
i = −Ri(u

n)−
∑

j∈Ωi
j 6=i

∂Ri

∂uj
∆u

(∗)
j

∆u
(∗)
j the most recently updated solution

Linearization of the residual at u(∗) = un +∆u(∗)

Ri

(
u(∗)

)
≈ Ri

(
un
)
+
∑

j∈Ωi

∂Ri

∂uj
∆u

(∗)
j

= Ri

(
un
)
+
∑

j∈Ωi
j 6=i

∂Ri

∂uj
∆u

(∗)
j +

∂Ri

∂ui
∆u

(∗)
i
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Implicit scheme for turbulent flows
Non-linear LU-SGS: Y.Sun, Z.J. Wang Y. Liu. 2009

Substituting in the RHS of the SGS scheme

[
I

∆tn
+
∂Ri

∂ui

] (
∆u

(k+1)
i −∆u

(∗)
i

)
= −Ri

(
u(∗)

)
+
�
�
��❅

❅
❅❅

∆u
(∗)
i

∆tn
,

which is solved with the forward and backward sweeps

The RHS is nothing but the residual evaluated at the latest available
solutions. ( So the algorithm is called non-linear )

At the beginning of each step the diagonal block of the Jacobian in the LHS
is inverted using LU decomposition

Only diagonal blocks of the approximated Jacobian used
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Subsonic and transonic flow over a RAE2822 airfoil

Y

Z

Y

Z XX

Re = 6.5× 106, α = 2.79◦

M = 0.4 (subsonic)
M = 0.734 (transonic)

SPR-ZZ gradient reconstruction

Linear scheme (subsonic)
Non-linear scheme (transonic)

Non-linear LU-SGS implicit scheme

Residual drop ∼ 10−10
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Subsonic flow over a RAE2822 airfoil
Example of third order results on a fine grid

M: 0.02 0.12 0.22 0.32 0.42 0.52 0.62

(a) Mach number contours
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(b) Residual history
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Subsonic flow over a RAE2822 airfoil
Force coefficient convergence
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C
L

0.01 0.02 0.03 0.04

0.4

0.45

0.5

0.55

P1
P2

(a) Cl

1/N.DoF1/2

C
D

0.01 0.02 0.03 0.04

0.02

0.04

0.06

P1
P2

(b) Cd

Dante De Santis (Stanford University) AMS Seminar March 26, 2015 38 / 49



Introduction RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Transonic flow over a RAE2822 airfoil
Example of third order results on a fine grid
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(b) Residual history
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Transonic flow over a RAE2822 airfoil
Comparison second and third order results (Ndof = 32 784)
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Transonic flow over a RAE2822 airfoil
Force coefficient convergence: DoFs
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Transonic flow over a RAE2822 airfoil
Force coefficient convergence: CPU time

Work units
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L1T2 high-lift multi-element airfoil
M = 0.197, Re = 3.52× 106, α = 20.18◦

Unstructured grid of triangles: 33 338 elements

2nd and 3rd order computations: linear scheme + SPR-ZZ

Convergence criterion: normalized L2 residual ∼ 1× 10−10
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L1T2 high-lift multi-element airfoil
P1 & P2 Mach number contours

M: 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

M: 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
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L1T2 high-lift multi-element airfoil
P1 & P2 Cp and experimental data
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Subsonic flow over the NASA 65◦ sweep delta wing
M = 0.4, α = 13.3◦, Re = 3× 106

Linear scheme with SPR-ZZ
Grid of 1 145 797 tetrahedra
Residual drop ∼ 10−5

Parallel simulations: 96 processors
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(b) Cp and µt contours (third order)
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Subsonic flow over the NASA 65◦ sweep delta wing
Third order results: Cp on the wing at different spanwise sections
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Introduction RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Conclusions & Perspectives

Numerical method

Idea developed first for advection-diffusion problems

Based on accurate reconstruction of the gradient

Possibility to get monotone & accurate solutions

Numerical results

Extensive evaluation of the numerical solver

Extension to N-S and RANS equations

Efficient and robust implicit scheme

Capabilities of HO approach in solving challenging applications

Extension to complex EOS and hypersonic flows
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Conclusions & Perspectives

Numerical method

Idea developed first for advection-diffusion problems

Based on accurate reconstruction of the gradient

Possibility to get monotone & accurate solutions

Numerical results

Extensive evaluation of the numerical solver

Extension to N-S and RANS equations

Efficient and robust implicit scheme

Capabilities of HO approach in solving challenging applications

Extension to complex EOS and hypersonic flows

Big challenge

Unsteady problems: not clear how to get HO
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Improvement of viscous term discretization
Inspired by H. Nishikawa

Write the original advection-diffusion problem as a first order system

{
∇· f (u)−∇· (νq) = 0

q −∇u = 0

Discretize the f.o.s with a central scheme + a streamline stabilization

∫

Ωe

ψi

(
∇· f (uh)−∇· (νqh)

qh −∇uh

)
+

∫

Ωe

A·∇ψi τ

(
∇· f (uh)−∇· (νqh)

qh −∇uh

)
= 0

where

A·∇ψi =




a·∇ψi −ν
∂ψi

∂x
−ν

∂ψi

∂y

−
∂ψi

∂x
0 0

−
∂ψi

∂y
0 0




and τ =



τa 0 0
0 τa 0
0 0 τa



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FOS system

∂u

∂t
+ a ·∇u = ν

(
∂p

∂x
+
∂q

∂y

)

∂p

∂t
=

1

Tr

(
∂u

∂x
− p

)

∂q

∂t
=

1

Tr

(
∂u

∂y
− q

)

∂u

∂t
+A · ∇u = S,

with

u =




u

p

q


 , Ax




ax −ν 0

1

Tr
0 0

0 0 0


 , Ay




ay 0 −ν

0 0 0

1

Tr
0 0


 , S =




0

−
p

Tr

−
q

Tr




Dante De Santis (Stanford University) AMS Seminar March 26, 2015 53 / 49



Solve: a · ∇u = ν∇·∇u, with ν = 0.01 (Pe ∼ 1)
Linear scheme: Benefit of high-order approximation

Similar results with the non-linear scheme

Similar results with grids of quadrangles and hybrid elements

What is the effect of the grid regularity?
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Solve: a · ∇u = ν∇·∇u, with ν = 0.01 (Pe ∼ 1)
Linear scheme and non-linear scheme on perturbed grid

log(h)

lo
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Solve: a · ∇u = ν∇·∇u, with ν = 10−6 (Pe ≫ 1)
Linear scheme and non-linear scheme unstructured grid
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Anisotropic diffusion problem
Linear scheme and non-linear scheme unstructured grid

−∇·K∇uh = 0

K =

(
1 0
0 δ

)
, δ = 103
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RD discretization of system of equations

Calculation of the total residual

Φe =

∫

∂Ωe

(
f
a
(
uh
)
−K(uh)∇̃uh

)
· n̂
)

∇̃uh: gradient reconstruction similarly to scalar case

Linear scheme

Φe
i =

Φe

Ne
dof

+

∫

Ωe

A · ∇ψi τ
(
A · ∇uh −∇· (K∇̃uh)

)

+

∫

Ωe

K · ∇ψi

(
(∇uh − ∇̃uh)

)

τ =
|Ωe|

Ndim

(
∑

i∈e

RniΛ
+
ni
Lni +Kjj

)−1
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RD discretization of system of equations

Calculation of the total residual

Φe =

∫

∂Ωe

(
f
a
(
uh
)
−K(uh)∇̃uh

)
· n̂
)

∇̃uh: gradient reconstruction similarly to scalar case

Non-linear scheme

Φ̂e,Rv
i = Φ̂e

i + ε e
h(uh)

∫

Ωe

(
A · ∇ψi − K∇ψi

)
Ξ
(
A · ∇uh −∇·

(
K∇̃uh

))
dΩ

+

∫

Ωe

K∇ψi ·

(
∇uh − ∇̃uh

)
dΩ

Ξ =
1

2
|Ωe|


∑

i∈N e
h

Rni(ū)Λ
+
ni
(ū) Lni(ū) +

Ndim∑

j=1

Kjj(ū)




−1

.
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Boundary conditions
How to impose boundary conditions

Imposition of weak boundary conditions

∑

e∈Eh,i

Φe
i +

∑

f∈Fh,i

Φe,∂
i = 0, ∀i ∈ Nh,

Boundary residual contribution

Φe,∂
i =

∫

∂Ωi∩∂Ω

ψi

(
f(u∂)− f(uh)

)
· n d∂Ω

Correction flux:
(
f(u∂)− f(uh)

)
· n

Slip wall:
(
f
a(u∂wall)− f

a(uh)
)
· n̂ = −vn(ρ, ρv, E

t+P )T

In/Out flow:
(
f
a(u∂

in/out)− f
a(uh)

)
· n̂ = A−

n (u
h)(u∂

in/out − uh)

Adiabatic wall: v = 0 (strong) and f
v(u∂wall) = (0, 0, 0,−κ∇̃T ·n)T
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Implicit time integration
Inexact Newton-Krylov methods

Implicit Euler scheme with linearization: A(unh)∆unh = −R(unh)
[

I

∆tn
+
∂R

∂u
(unh)

]
∆un = −R(unh), ∆un ≡ un+1 − un
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Implicit time integration
Inexact Newton-Krylov methods

Implicit Euler scheme with linearization: A(unh)∆unh = −R(unh)
[

I

∆tn
+
∂R

∂u
(unh)

]
∆un = −R(unh), ∆un ≡ un+1 − un

Approximated solution ‖R(unh) +A(unh)∆unh‖ ≤ ηnh‖R(u
n
h)‖ with GMRES
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Implicit time integration
Inexact Newton-Krylov methods

Implicit Euler scheme with linearization: A(unh)∆unh = −R(unh)
[

I

∆tn
+
∂R

∂u
(unh)

]
∆un = −R(unh), ∆un ≡ un+1 − un

Approximated solution ‖R(unh) +A(unh)∆unh‖ ≤ ηnh‖R(u
n
h)‖ with GMRES

Impossible to compute the analytical Jacobian: poor iterative convergence
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Implicit time integration
Inexact Newton-Krylov methods

Implicit Euler scheme with linearization: A(unh)∆unh = −R(unh)
[

I

∆tn
+
∂R

∂u
(unh)

]
∆un = −R(unh), ∆un ≡ un+1 − un

Approximated solution ‖R(unh) +A(unh)∆unh‖ ≤ ηnh‖R(u
n
h)‖ with GMRES

Jacobian-free

Aw =

(
I

∆tn
+
∂R

∂u
(unh)

)
w
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Implicit time integration
Inexact Newton-Krylov methods

Implicit Euler scheme with linearization: A(unh)∆unh = −R(unh)
[

I

∆tn
+
∂R

∂u
(unh)

]
∆un = −R(unh), ∆un ≡ un+1 − un

Approximated solution ‖R(unh) +A(unh)∆unh‖ ≤ ηnh‖R(u
n
h)‖ with GMRES

Jacobian-free

Aw =

(
I

∆tn
+
∂R

∂u
(unh)

)
w

≃
I

∆tn
w+

R(unh+ ǫw)−R(unh)

ǫ
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Implicit time integration
Inexact Newton-Krylov methods

Implicit Euler scheme with linearization: A(unh)∆unh = −R(unh)
[

I

∆tn
+
∂R

∂u
(unh)

]
∆un = −R(unh), ∆un ≡ un+1 − un

Approximated solution ‖R(unh) +A(unh)∆unh‖ ≤ ηnh‖R(u
n
h)‖ with GMRES

Jacobian-free

Aw =

(
I

∆tn
+
∂R

∂u
(unh)

)
w

≃
I

∆tn
w+

R(unh+ ǫw)−R(unh)

ǫ

ǫ=

√
1+‖u‖L2

‖w‖L2

ǫrel, ǫrel = 10−8
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Implicit time integration
Inexact Newton-Krylov methods

Implicit Euler scheme with linearization: A(unh)∆unh = −R(unh)
[
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∂u
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]
∆un = −R(unh), ∆un ≡ un+1 − un
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≃
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R(unh+ ǫw)−R(unh)

ǫ

ǫ=

√
1+‖u‖L2

‖w‖L2

ǫrel, ǫrel = 10−8

Preconditioning: AP−1Px = b

AP−1w = b and x = P−1w
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Implicit time integration
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ǫ

ǫ=

√
1+‖u‖L2

‖w‖L2

ǫrel, ǫrel = 10−8

Preconditioning: AP−1Px = b

AP−1w = b and x = P−1w

LU-SGS Preconditioner:

(D + L)D−1(D + U)x = b+ (LD−1U)x
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Implicit time integration
Inexact Newton-Krylov methods

Implicit Euler scheme with linearization: A(unh)∆unh = −R(unh)
[

I

∆tn
+
∂R

∂u
(unh)

]
∆un = −R(unh), ∆un ≡ un+1 − un

Approximated solution ‖R(unh) +A(unh)∆unh‖ ≤ ηnh‖R(u
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Jacobian-free
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)
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w+

R(unh+ ǫw)−R(unh)

ǫ
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Preconditioning: AP−1Px = b

AP−1w = b and x = P−1w

LU-SGS Preconditioner:

P = (D + L)D−1(D + U)




x⋆i = D−1
i

(
wi −

∑

j<i

wj x
⋆
j

)
, i=1, ..., Ndof

xi = x⋆i −D−1
i

∑

j>i

wj xj , i=Ndof , ..., 1

Dante De Santis (Stanford University) AMS Seminar March 26, 2015 60 / 49



Laminar NACA-0012
M = 0.5, α = 0, Re = 5 000

4216 P2 elements (8564 DOFs)

Linear scheme with ZZ-SPR

Residual down to zero machine
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Laminar NACA-0012
M = 0.5, α = 0, Re = 5 000
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Laminar NACA-0012
M = 0.5, α = 0, Re = 5 000
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Shock-Wave/Laminar Boundary Layer Interaction
Comparison between second and third order accurate results

Profiles at y = 0.29
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Shock-Wave/Laminar Boundary Layer Interaction
Comparison between second and third order accurate results

Profiles at y = 0.15
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Shock-Wave/Laminar Boundary Layer Interaction
Comparison between second and third order accurate results

Profiles along the wall
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Turbulent flow over a flat plate
M = 0.2, ReL=1 = 5× 106

Linear scheme with SPR-ZZ gradient reconstruction

Jacobian-free with LU-SGS preconditioner (Residual drop ∼ 10−10)

Nested grids

Value of y+1 (at x = 0.97)

Grid 35× 25 Grid 69× 49 Grid 137× 97 Grid 273× 193

y+1P1
1.500 0.722 0.359 0.182

y+1P2
0.765 0.372 0.184 –
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Turbulent flow over a flat plate
M = 0.2, ReL=1 = 5× 106

Linear scheme with SPR-ZZ gradient reconstruction

Jacobian-free with LU-SGS preconditioner (Residual drop ∼ 10−10)

Nested grids

Velocity profiles (at x = 0.97)
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(a) Second order
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(b) Third order
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Turbulent flow over a flat plate
Friction coefficient along the plate
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(b) Third order
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Turbulent flow over a flat plate
Drag coefficient values

1/N.Dof1/2
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